The satisfiability threshold for random linear equations

نویسندگان

  • Peter J. Ayre
  • Amin Coja-Oghlan
  • Pu Gao
  • Noëla Müller
چکیده

Let $A$ be a random $m\times n$ matrix over the finite field $F_q$ with precisely $k$ non-zero entries per row and let $y\in F_q^m$ be a random vector chosen independently of $A$. We identify the threshold $m/n$ up to which the linear system $A x=y$ has a solution with high probability and analyse the geometry of the set of solutions. In the special case $q=2$, known as the random $k$-XORSAT problem, the threshold was determined by [Dubois and Mandler 2002, Dietzfelbinger et al. 2010, Pittel and Sorkin 2016], and the proof technique was subsequently extended to the cases $q=3,4$ [Falke and Goerdt 2012]. But the argument depends on technically demanding second moment calculations that do not generalise to $q>3$. Here we approach the problem from the viewpoint of a decoding task, which leads to a transparent combinatorial proof.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic characteristics and satisfiability threshold of random Boolean equations.

The satisfiability of a class of random Boolean equations named massive algebraic system septated to linear and nonlinear subproblems is studied in this paper. On one hand, the correlation between the magnetization of generators and the clustering of solutions of the linear subproblem is investigated by analyzing the Gaussian elimination process. On the other hand, the characteristics of maxima...

متن کامل

The Satisfiability Threshold for k-XORSAT

We consider “unconstrained” random k-XORSAT, which is a uniformly random system of m linear non-homogeneous equations in F2 over n variables, each equation containing k ≥ 3 variables, and also consider a “constrained” model where every variable appears in at least two equations. Dubois and Mandler proved that m/n = 1 is a sharp threshold for satisfiability of constrained 3-XORSAT, and analyzed ...

متن کامل

Threshold values of Random K-SAT from the cavity method

Using the cavity equations of Mézard, Parisi, and Zecchina [Science 297 (2002), 812; Mézard and Zecchina, Phys Rev E 66 (2002), 056126] we derive the various threshold values for the number of clauses per variable of the random K-satisfiability problem, generalizing the previous results to K ≥ 4. We also give an analytic solution of the equations, and some closed expressions for these threshold...

متن کامل

The Satisfiability Threshold for a Seemingly Intractable Random Constraint Satisfaction Problem

We determine the exact threshold of satisfiability for random instancesof a particular NP-complete constraint satisfaction problem (CSP). This isthe first random CSP model for which we have determined a precise linearsatisfiability threshold, and for which random instances with density nearthat threshold appear to be computationally difficult. More formally,it is the first r...

متن کامل

Geometrical organization of solutions to random linear Boolean equations

The random XORSAT problem deals with large random linear systems of Boolean variables. The difficulty of such problems is controlled by the ratio of number of equations to number of variables. It is known that in some range of values of this parameter, the space of solutions breaks into many disconnected clusters. Here we study precisely the corresponding geometrical organization. In particular...

متن کامل

Smooth and sharp thresholds for random k-XOR-CNF satisfiability

The aim of this paper is to study the threshold behavior for the satisfiability property of a random k-XOR-CNF formula or equivalently for the consistency of a random Boolean linear system with k variables per equation. For k ≥ 3 we show the existence of a sharp threshold for the satisfiability of a random k-XOR-CNF formula, whereas there are smooth thresholds for k = 1 and k = 2. Mathematics S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.07497  شماره 

صفحات  -

تاریخ انتشار 2017